Почему мы не можем использовать линейную регрессию для задачи классификации?
Основная причина в том, что выход модели линейной регрессии — это непрерывные значения. А в задаче классификации нам нужно получать значения конкретных классов, то есть дискретные значения.
Это обстоятельство вынуждает нас использовать другую функцию потерь. Если в линейной регрессии обычно применяется среднеквадратичная ошибка, то для классификации предпочтительнее использовать например, кросс-энтропию.
Модификацией линейной регрессии под задачу классификации является логистическая регрессия, которая предсказывает логиты и способна давать выходные значения, ограниченные интервалом от 0 до 1. Таким образом, она предсказывает вероятности того, что конкретный объект принадлежит к какому-либо классу.
Почему мы не можем использовать линейную регрессию для задачи классификации?
Основная причина в том, что выход модели линейной регрессии — это непрерывные значения. А в задаче классификации нам нужно получать значения конкретных классов, то есть дискретные значения.
Это обстоятельство вынуждает нас использовать другую функцию потерь. Если в линейной регрессии обычно применяется среднеквадратичная ошибка, то для классификации предпочтительнее использовать например, кросс-энтропию.
Модификацией линейной регрессии под задачу классификации является логистическая регрессия, которая предсказывает логиты и способна давать выходные значения, ограниченные интервалом от 0 до 1. Таким образом, она предсказывает вероятности того, что конкретный объект принадлежит к какому-либо классу.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.
What is Telegram Possible Future Strategies?
Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.
Библиотека собеса по Data Science | вопросы с собеседований from in